柴油發電機組是常用的備用電源,由于它以柴油發動機燃燒柴油為動力,帶動發電機發出與市電同樣性質的電力,所以用在市電斷電后需要后備電源供電幾小時以上的場合。從性能價格比、對工作環境的要求、帶非線性負載能力方面考慮,采用柴油發電機組比使用很多大容量蓄電池的長延時UPS往往具有一定的優勢。但是柴油發電機組在市電斷電后需要十秒鐘左右才能發出穩定的電力,這就大不如UPS可不間斷供電的特點。因此,柴油發電機組和UPS通常是取其各自的優勢構成一個完善的、可靠的電源系統,以確保重要設備的不間斷供電。
柴油發電機組一般是采用同步發電機(也俗稱電球)將柴油發動機的旋轉機械能轉為電能。各種用電設備要依靠它發出的電力工作,因此對同步發電機的工作性能要求是很高的。
1 同步發電機的工作原理
同步發電機是根據電磁感應原理制造的。主要組成部分如圖1。現代交流發電機通常由兩部分線圈構成;為了提高磁場的強度,一部分線圈繞在一個導磁性能良好的金屬片疊成的圓筒內壁的凹槽內,這個圓筒固定在機座上稱為定子。定子內的線圈可輸出感應電動勢和感應電流,所以又稱其為電樞。發電機的另一部分線圈則繞在定子圓筒內的一導磁率強的金屬片疊成的圓柱體的凹槽內,稱為轉子。一根軸穿過轉子中心并將其緊固在一起,軸兩端與機座構成軸承支撐。轉子與定子內壁之間保持小而均勻的間隙且可靈活轉動。這叫做旋轉磁場式結構的無刷同步發電機。
工作時,轉子線圈通以直流電形成直流恒定磁場,在柴油機的帶動下轉子快速旋轉,恒定磁場也隨之旋轉,定子的線圈被磁場磁力線切割產生感應電動勢,發電機就發出電來。
1—前端蓋;2—出風蓋板;3—軸承;4—定子;5—端子箱側板;6—電壓調節器;7—調節器支架;8—端子箱頂蓋;9—端子箱前后板;10—接線板;11—接線板支架;12—端子箱側板;13—吊攀;14—軸承蓋;15—進風蓋板;16—后端蓋;17—勵磁定子;18—勵磁定子固定螺栓;19—軸承;20—旋轉整流器;21—勵磁電樞;22—接地牌;23—轉子;24—風扇;25—永磁機機殼;26—永磁機轉軸;27—永磁機轉子;28—永磁機定子;29—永磁機定子固定螺栓;30—永磁機轉子固定螺栓;31—墊圈;32—永磁機蓋板
圖1 雙軸承發電機剖視圖
轉子及其恒定磁場被柴油機帶動快速旋轉時,在轉子與定子之間小而均勻的間隙中形成一個旋轉的磁場,稱為轉子磁場或主磁場。平常工作時發電機的定子線圈即電樞都接有負載,定子線圈被磁場磁力線切割后產生的感應電動勢通過負載形成感應電流,此電流流過定子線圈也會在間隙中產生一個磁場,稱為定子磁場或電樞磁場。這樣在轉子、定子之間小而均勻的間隙中出現了轉子磁場和定子磁場,這兩個磁場相互作用構成一個合成磁場。發電機就是由合成磁場的磁力線切割定子線圈而發電的。由于定子磁場是由轉子磁場引起的,且它們之間總是保持著一先一后并且同速的同步關系,所以稱這種發電機為同步發電機。同步發電機在機械結構和電器性能上都具有許多優點。
2 同步發電機的調控
同步發電機在其額定負載范圍內允許帶各種用電負荷。這些負荷的輸入特性會直接影響發電機的輸出電壓;當負載為純電阻性時,因為同步發電機的定子端電壓——電樞端電壓與負載電流是同相的,所以使得轉子磁場的前一半被定子磁場削弱,而后一半又被定子磁場加強,一周內合成磁場平均值不變,發電機輸出電壓不變。負載呈現為純電感性時,則因負載電流滯后電樞端電壓90°而使得定子磁場削弱了轉子磁場,合成磁場降低,造成發電機輸出電壓下降。若負載是純電容性的,負載電流就會超前電樞端電壓90°,從而使定子磁場加強了轉子磁場,合成磁場增大,發電機輸出電壓上升。可見;合成磁場是使發電機性能變化的一個重要因素。而合成磁場中起主要作用的是轉子磁場即主磁場,因此,調控轉子磁場就可以調節同步發電機的輸出電壓改善其帶負載能力,從而達到在額定負荷范圍內穩住發電機輸出電壓的目的。
(1)同步發電機轉子的勵磁
所謂勵磁即是向同步發電機轉子提供直流電使其產生直流電磁場的過程。同步發電機轉子凹槽內的線圈就是由稱做勵磁機的一個專門的設備為其供以直流電形成直流磁場的。早期的發電機是采用單獨的勵磁機給轉子線圈提供直流電的,系統龐大而復雜。隨著技術的進步,現代同步發電機都是將發電機與勵磁機組裝在一起構成一個完整的發電機。
勵磁機其實就是個小發電機,它的工作原理與同步發電機一樣。所不同的是它的定子線圈和轉子線圈所起的作用與同步發電機——主發電機正好相反;固定在主發電機定子旁的勵磁機的定子線圈通以直流電形成直流磁場,而安裝在主發電機轉子軸上的勵磁機的轉子線圈成為輸出電動勢的電樞。勵磁機的轉子與定子內壁之間也是保持著小而均勻的間隙。這也稱為旋轉電樞式結構的無刷同步發電機。安裝在主發電機定子旁的勵磁機定子線圈的直流電,是由主發電機定子線圈即電樞的部分輸出電壓經整流后而得到的。與主發電機轉子同軸安裝的勵磁機轉子線圈在其定子線圈產生的磁場內旋轉、切割磁力線所產生的感應電動勢,經同軸安裝在它旁邊的整流器也就是旋轉整流器變成直流電流,輸到主發電機的轉子線圈使其產生直流轉子磁場。從而達到了對主發電機轉子線圈勵磁的要求。
(2)同步發電機輸出電壓的調控
調控的目的就是實現在同步發電機額定負荷范圍內穩住輸出電壓。調控技術的理念是實時地從主發電機電樞取得電壓和電流,經整流和負反饋調理后供給勵磁機的定子線圈,使其產生變化規律與主發電機輸出電壓變化規律相反的直流電磁場,這個磁場也必然使勵磁機轉子電樞的輸出電壓及旋轉整流器供給主發電機轉子線圈的直流電流按同樣的規律而變化。從而起到實時調節主發電機轉子磁場大小,使主發電機在額定負荷范圍內保持良好輸出特性的作用。
對發電機輸出電壓的調節過程,可以用以下的流程表示;
由于負荷增加使主發電機電樞電壓↓(降) →經負反饋調理后勵磁機定子電流及磁場↑→勵磁機轉子電樞輸出電壓↑→旋轉整流器輸出電流↑→主發電機轉子磁場↑→使主發電機電樞電壓↑
若主發電機電壓升高,則其反饋調控使以上各環節作用降低,導致電壓回到額定值。
可見通過勵磁機實時調控主發電機轉子磁場的大小,就可以穩住輸出電壓。這其中起重要作用的是負反饋調節單元,通常稱其為恒壓勵磁裝置和自動電壓調節器。
(3)自動電壓調節器
現代交流同步發電機常用自動電壓調節器AVR這種電子部件調節勵磁機定子磁場的強弱。雖然AVR的種類很多,但性能大同小異;都是實時采樣主發電機的輸出電壓值與預先設定的值相比較,用比較的結果去調節脈沖寬度調制器PWM;輸出電壓值高則調制器輸出脈沖寬度窄,反之則寬。然后再用這些脈沖去調控大功率開關器件即三極管或場效應管控制送入勵磁機定子線圈的電流的時間。從而使它的磁場強弱隨著主發電機輸出電壓的變化而相反變化;即輸出電壓升高則勵磁機定子磁場減小,輸出電壓降低勵磁機定子磁場增強。從而達到負反饋調控的目的